The Language Of Physics

01/07/2019 Physics can often seem inconceivable. It’s a field of strange concepts and special terms. Language often fails to capture what’s really going on within the math and theories. And to make things even more complicated, physics has repurposed a number of familiar English words. 

Much like Americans in England, folks from beyond the realm of physics may enter to find themselves in a dream within a dream, surrounded by a sea of words that sound familiar but are still somehow completely foreign. 

Not to worry! Symmetry is here to help guide you with this list of words that acquire a new meaning when spoken by physicists.

.
Purple and yellow graphic of the word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Quench

The physics version of quench has nothing to do with Gatorade products or slaking thirst. Instead, a quench is what happens when superconducting materials lose their ability to superconduct (or carry electricity with no resistance). During a quench, the electric current heats up the superconducting wire and the liquid coolant meant to keep the wire at its cool, superconducting temperature warms and turns into a gas that escapes through vents. Quenches are fairly common and an important part of training magnets that will focus and guide beams through particle accelerators. They also take place in superconducting accelerating cavities.

Green and pink graphic of the word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Cannibalism, strangulation and suffocation

These gruesome words take on a new, slightly kinder meaning in astrophysics lingo. They are different ways that a galaxy's shape or star formation rate can be changed when it is in a crowded environment such as a galaxy cluster. Galactic cannibalism, for example, is what happens when a large galaxy merges with a companion galaxy through gravity, resulting in a larger galaxy.

Purple, pink, and blue graphic of word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Chicane

Depending on how much you know about racecars and driving terms, you may or may not have heard of a chicane. In the driving world, a chicane is an extra turn or two in the road, designed to force vehicles to slow down. This isn’t so different from chicanes in accelerator physics, where collections of four dipole magnets compress a particle beam to cluster the particles together. It squeezes the bunch of particles together so that those in the head (the high-momentum particles at the front of the group) are closer to the tail (the particles in the rear).

Yellow and green graphic of the word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Cooler

A beam cooler won’t be of much use at your next picnic. Beam cooling makes particle accelerators more efficient by keeping the particles in a beam all headed the same direction. Most beams have a tendency to spread out as they travel (something related to the random motion, or “heat,” of the particles), so beam cooling helps kick rogue particles back onto the right path—staying on the ideal trajectory as they race through the accelerator.

Blue and red magnet graphic of the word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

House

In particle physics, a house is a place for magnets to reside in a particle accelerator. House is also used as a collective noun for a group of magnets. Fermilab’s Tevatron particle accelerator, for example, had six sectors, each of which had four houses of magnets.

Red and yellow graphic of word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Barn

A barn is a unit of measurement used in nuclear and particle physics that indicates the target area (“cross section”) a particle represents. The meaning of the science term was originally classified, owing to the secretive nature of efforts to better understand the atomic nucleus in the 1940s. Now you can know: One barn is equal to 10-24 cm2. In the subatomic world, a particle with that size is quite large—and hitting it with another particle is practically like hitting the broad side of a barn.

Purple and yellow graphic with
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Cavity

Most people dread cavities, but not in particle physics. A cavity is the name for a common accelerator part. These metal chambers shape the accelerator’s electric field and propel particles, pushing them closer to the speed of light. The electromagnetic field within a radio-frequency cavity changes back and forth rapidly, kicking the particles along. The cavities also keep the particles bunched together in tight groups, increasing the beam’s intensity.

Word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Doping

Most people associate doping with drug use and sports. But doping can be so much more! It’s a process to introduce additional materials (often considered impurities) into a metal to change its conducting properties. Doped superconductors can be far more efficient than their pure counterparts. Some accelerator cavities made of niobium are doped with atoms of nitrogen. This is being investigated for use in designing superconducting magnets as well.

Slang
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Injection

In particle physics, injections don’t deliver a vaccine through a needle into your arm. Instead, injections are a way to transfer particle beams from one accelerator into another. Particle beams can be injected from a linear accelerator into a circular accelerator, or from a smaller circular accelerator (a booster) into a larger one.

The word
Artwork by Sandbox Studio, Chicago with Corinne Mucha

Decay

Most people associate decay with things that are rotting. But a particle decay is the process through which one particle changes into other particles. Most particles in the Standard Model are unstable, which means that they decay almost immediately after coming into being. When a particle decays, its energy is divided into less massive particles, which may then decay as well.

FlavorIllustration by Sandbox Studio, Chicago with Corinne Mucha

Flavor

In particle physics, flavor has nothing to do with your taste buds. Instead, the term signifies different kinds of particles. There are six “flavors,” or varieties, of quark: up, down, top, bottom, strange and charm. There are also six flavors of leptons: the electron, muon and tau, and their corresponding neutrinos (the electron, muon and tau neutrinos).

ColorIllustration by Sandbox Studio, Chicago with Corinne Mucha

Color

Put away your box of crayons. Color, much like flavor, is another way of differentiating subatomic particles, but it isn’t based on hue. Quarks can be designated as red, green or blue, but the colorful naming scheme represents an abstract characteristic of the particles’ charge related to the strong (instead of electric) force rather than an actual color. In fact, there’s a whole field of physics dedicated to QCD: quantum chromo (or color) dynamics.

FieldIllustration by Sandbox Studio, Chicago with Corinne Mucha

Field

Physical fields can be dotted with crops or laden with grass and flowers. Fields in physics, however, are more monotone, and usually extend to infinity. They permeate the universe, becoming apparent only when they encounter something that can interact with them. Electrically charged particles can interact with the electromagnetic field; particles with mass can interact with the gravitational field, and part of what gives those particles mass is the Higgs field.

JetIllustration by Sandbox Studio, Chicago with Corinne Mucha

Jet

This is your captain speaking: In particle physics, jets are unrelated to airplanes. Jets are showers of hadrons (particles made of quarks and gluons) that often emerge from high-energy collisions in places like the Large Hadron Collider. They’re caused when an energetic quark or gluon starts to head off on its own. Quarks and gluons don’t like to appear solo, so the energetic particle pulls some friends out of the vacuum, creating a shower of particles headed in roughly the same direction. A jet is born!

TriggerIllustration by Sandbox Studio, Chicago with Corinne Mucha

Trigger

We typically think of a trigger as a device that sets something off. In particle physics experiments, a trigger is the system that tells a computer in a split second to capture the data from a certain collision. It’s a way of focusing on just the most interesting and relevant particle interactions at experiments that produce far more data than can be reasonably recorded, stored and analyzed.

BackgroundIllustration by Sandbox Studio, Chicago with Corinne Mucha

Background

Backgrounds aren’t just for paintings and photographs. In physics experiments, the background refers to all of the extra signals that a detector may pick up while it is searching for something unique. For example, a detector built to study a beam of neutrinos produced at an accelerator might also detect particles coming from space. Sorting the desired signal from the background is a crucial part of particle physics experiments.

WimpIllustration by Sandbox Studio, Chicago with Corinne Mucha

WIMP

While “wimp” is an insult used to imply someone lacks courage or is weak, a “WIMP” is a strong candidate for dark matter. WIMP is an acronym for “weakly interacting massive particle,” a hypothetical particle that would be massive enough to explain mysterious gravitational effects cosmologists see in the universe but that would interact with other matter rarely enough to explain why it has yet to be observed. They’re one of several ideas for what makes up dark matter, the invisible substance that is thought to vastly outnumber regular matter in our universe.

InflationIllustration by Sandbox Studio, Chicago with Corinne Mucha

Inflation

Inflation probably makes you think of a balloon blowing up or currency going down in value. But it could also inspire thoughts of the beginning of our universe. Physicists refer to inflation as the period just after the Big Bang when space expanded exponentially in all directions, causing small quantum variations to expand to a cosmic scale. This ultimately led to the large-scale structure of matter in the universe that we see today in things like galaxy clusters.

EntanglementIllustration by Sandbox Studio, Chicago with Corinne Mucha

Entangle

When most of us deal with something entangled, it’s usually something like the cables of a pair of headphones. But for particle physicists, entanglement refers to what Einstein called “spooky action at a distance”: the way that two particles can be separated by great distances but “connected” in such a way that influencing one seems to affect the other instantaneously.

CandleIllustration by Sandbox Studio, Chicago with Corinne Mucha

Candle

Your standard candle is probably made of wax and has a wick. An astrophysicist’s standard candle is an astronomical object with a known brightness (or luminosity) that can be used to measure distances on an enormous scale. Examples of standard candles include X-ray bursts and different types of stars, such as Cepheid variable stars or supernovae (exploding stars). Measuring the speed of the expansion of the universe over time using standard candles, scientists made the startling discovery that the universe is growing at an accelerating rate.

UncertaintyIllustration by Sandbox Studio, Chicago with Corinne Mucha

Uncertainty

A person talking about how uncertain they are might seem less than confident, but for scientists, it can be quite the opposite. Providing the measure of uncertainty gives context to how well something is known. Every measurement has some degree of error, and there’s natural variability to experimental results even without human intervention. It’s only after scientists establish the uncertainties in a mathematical way that they can see how a result compares to a numerical prediction or a previous measurement.

SignalIllustration by Sandbox Studio, Chicago with Corinne Mucha

Signal

The word “signal” might make you think of a gesture or preparing to make a turn in a car. In physics, a signal is the data coming from an expected source—the process or event that scientists are trying to capture. Experiments looking for rare, faint signals (such as the decay of a single proton or the minuscule deposit of energy from a dark matter particle) take great pains to understand, reduce or eliminate anything that could provide a false signal.

NoiseIllustration by Sandbox Studio, Chicago with Corinne Mucha

Noise

You probably don’t want a bunch of noise when you’re trying to hear a particular sound—and physicists don’t want a bunch of noise when they are searching for a particular signal. Noise is the unwanted data that can be captured along with—and sometimes obscure—the signal a scientist is looking for. This distracting background can come from things like fluctuations in electronics or processes near an experiment such as everyday radioactive decay of materials or collisions of cosmic rays with the atmosphere. For experiments to work, the signal has to rise above the noise so that scientists can detect it.

DampingIllustration by Sandbox Studio, Chicago with Corinne Mucha

Damping

Not to be confused with making something wet, damping in physics is associated with reducing vibrations or oscillations. This is particularly important in particle accelerators, where bunches of particles, like boats on a lake, can leave wakes behind them. These wakes make passage trickier for the next bunch of particles. Using mechanical dampers can reduce the wake and improve how well an accelerator performs.

SpinIllustration by Sandbox Studio, Chicago with Corinne Mucha

Spin

It’s easy to imagine a spinning planet, ballerina or top. Physicists also use the term “spin,” but in a different way: to describe the properties of particles. In particular, physicists discovered that, at the quantum mechanical level, particles have an intrinsic property that is like a permanent rotation, even when a particle has zero diameter and is considered a point-like object that can’t be described as rotating. Thus spin is used to describe an effect, not the way that effect is actually generated.

BeamIllustration by Sandbox Studio, Chicago with Corinne Mucha

Beam

It’s not a steel girder or a toothy smile—a beam is a focused stream of particles. Beams are created by particle accelerators and can be made of different kinds of particles, such as protons, electrons, neutrons, ions or neutrinos. These concentrated torrents of particles can be manipulated, studied in physics experiments or crashed into targets to create other kinds of particles.

TunnelingIllustration by Sandbox Studio, Chicago with Corinne Mucha

Tunneling

For physicists, tunneling isn’t about the habits of moles or carving away mountains to make room for roads. Quantum tunneling is instead a phenomenon in which a particle can pass through a barrier it normally wouldn’t be able to cross. It’s a result of quantum mechanics, the strange way that things can act differently at the smallest scales than they do at the larger scales that we’re used to. Quantum tunneling occurs, for example, during radioactive decay when a particle escapes the nucleus of an atom.

LuminosityIllustration by Sandbox Studio, Chicago with Corinne Mucha

Luminosity

You might think of luminosity as how much light something emits. In astrophysics, this is pretty close: Luminosity is how much energy a celestial object like a star emits in a certain amount of time. But luminosity is also a term in collider physics, where it describes how many particles will pass through a certain point—say, the heart of a detector where the particle collisions happen. Higher luminosity means more particle collisions and a higher chance for making discoveries.

QuintessenceIllustration by Sandbox Studio, Chicago with Corinne Mucha

Quintessence

“Quintessence” refers to a perfect example or the essence of something. But you also can find it in physics papers about the expansion of the universe. Dark energy is the mysterious force thought to be driving the expansion of our universe, defying the pull of gravity at an ever-growing rate. Scientists use the term quintessence to discuss the theoretical idea of an evolving type of dark energy that would change strength over time.

LifetimeIllustration by Sandbox Studio, Chicago with Corinne Mucha

Lifetime

To us humans, a lifetime is—if we’re lucky—about 90 years. For particles, it’s another story. The lifetime of a particle is based on how long it takes to decay, or transform into other (typically lighter) particles. Those that decay quickly have lifetimes of slivers of a second. Higgs bosons, for example, only can expect to hang around for about 1.6 x 10-22 seconds. Other particles, such as protons, are incredibly long-lived. It’s unknown whether protons decay at all. If they do, they have a lifetime that is longer than the entire history of our universe so far. But that doesn’t mean that all protons necessarily live that long. Experiments could record evidence for the decay of a single proton on any day, revolutionizing our understanding of the building blocks of matter.








Source: https://bit.ly/2YgITQR, via Symmetry

 
Share:
Conteúdo Relacionado: GC